
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2002; 38:1159–1176 (DOI: 10.1002/�d.191)

A numerical study of an unsteady laminar �ow in a doubly
constricted 3D vessel

B. V. Rathish Kumar1;3;∗, T. Yamaguchi2, H. Liu1 and R. Himeno1

1Division of High Performance Computing; RIKEN; Wako-shi; Japan
2Department of Mechanical and Systems Engineering; NIT; Nagoya; Japan

3Indian Institute of Technology; Kanpur; India

SUMMARY

Unsteady �ow dynamics in doubly constricted 3D vessels have been investigated under pulsatile �ow
conditions for a full cycle of period T . The coupled non-linear partial di�erential equations governing
the mass and momentum of a viscous incompressible �uid has been numerically analyzed by a time
accurate Finite Volume Scheme in an implicit Euler time marching setting. Roe’s �ux di�erence splitting
of non-linear terms and the pseudo-compressibility technique employed in the current numerical scheme
makes it robust both in space and time. Computational experiments are carried out to assess the in�uence
of Reynolds’ number and the spacing between two mild constrictions on the pressure drop across the
constrictions. The study reveals that the pressure drop across a series of mild constrictions can get
physiologically critical and is also found to be sensitive both to the spacing between the constrictions
and the oscillatory nature of the in�ow pro�le. The �ow separation zone on the downstream constriction
is seen to detach from the diverging wall of the constriction leading to vortex shedding with 3D features
earlier than that on the wall in the spacing between the two constrictions. Copyright ? 2002 John Wiley
& Sons, Ltd.
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INTRODUCTION

Study of unsteady �ow dynamics in a multiply constricted 3D vessel has several interesting
engineering and medical applications. For instance, tubes with wavy constrictions are used in
heat exchangers to enhance heat transfer performance. The re�ux condenser is an example
of such a system. Patankar et al. [1], Sparrow and Prata [2], and Prata and Sparrow [3]
etc. have worked with such con�gurations for analyzing the heat transfer process in a fully
developed laminar �ow in vessels having streamwise periodic variations of cross-sectional
area. Viscous �ow past wavy boundaries is of interest to researchers because of its importance
in phenomena such as the generation of wind waves on water, the stability of liquid �lm in
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contact with a gas stream, the transpiration cooling of re-entry vehicles and rocket boosters,
�lm vaporization in combustion, �uid �ow in pipes with �ttings etc. [4]. It is also of great
signi�cance to bio-�ow analysts owing to its relationship to localized stenoses, blood and
urinary �ow, and for the optimal design of arti�cial organs. Analysis of �ow dynamics in a
vessel with constriction is of paramount clinical importance in understanding the in�uence of
an arterial stenosis on regional blood �ow, i.e. on the perfusion of the distal vascular bed.
Further, the possibility of hemodynamic factors participating in the genesis and proliferation
of atherosclerosis has fostered increased study on the topic for the last two decades. Numerous
investigations on experimental, theoretical and computational fronts have been carried out to
trace the pressure–�ow relations, hemodynamic factors in a vessel with a single constriction.
Studies of Lee and Fung [5], Young and Tsai [6], Daly [7], Deshpande et al. [8], Wille
[9], O’Brien and Ehrlich [10], Huang et al. [11], Rathish Kumar and Naidu [12] etc. are in
this direction. These investigations lead to the notion of critical constriction or stenosis, i.e.
beyond 75–80 per cent of occlusion any small change in the lumen area produces abrupt
changes in the �ow through constriction and the pressure distal to it. In some cases the
presence of atherosclerotic plaques may lead to the occurrence of secondary stenosis distal to
the primary stenosis. In many clinical situations angiograms taken from patients with coronary
symptoms have indicated the presence of multiple stenoses in the same artery. Individually,
each of these constrictions can be non-critical. However, it is to be investigated whether a
number of such noncritical mild stenoses in a series could lead to pressure–�ow relations and
hemodynamic factor changes similar to a single critical stenosis. Further, if these individual
constrictions are spaced su�ciently apart, it seems obvious that each of them can be treated as
single constriction. In this non-interacting case their combined e�ect could be the sum of their
individual e�ects. When these constrictions are positioned close to one another, they would
be expected to interact with each other and their combined e�ect could be di�erent from the
non-interacting case. Talukder et al. [13] and Van Dreumel and Kuiken [14] have carried
out experimental studies related to �ow dynamics in doubly contricted vessels. Recently, Lee
[15] and Damodaran et al. [16] have made 2D steady �ow computational analysis of �ow in
multiply constricted vessels. Especially, the subtle features like vortex formation and shedding
demand a full 3D analysis. Now, owing to the energy loss associated with such features the
pressure drop across the constrictions associated with 3D �ow can be di�erent from what one
would get from a 2D analysis.
In this study, 3D unsteady �ow dynamics of a viscous incompressible �uid in a non-

compliant vessel with two constrictions in a series has been analyzed. A time accurate cell
centered Finite Volume Method [17] in conjunction with pseudo-compressibility technique and
Roe’s �ux di�erence splitting and MUSCL interpolation has been employed in the numerical
computations. The e�ect of Re on pressure drop and velocity distribution as the �ow passes
through the doubly constricted tube has been analyzed. To understand the interactability of
stenoses simulations have been carried out with di�erent spacings between the two stenoses.
Further, the subtle features like vortex formation and shedding, stretch of separation zones
have also been investigated.

DESCRIPTION OF THE MATHEMATICAL MODEL

Consider a 3D unsteady viscous incompressible Newtonian �uid in a doubly constricted non-
compliant vessel in the Cartesian co-ordinate system (x; y; z). The geometry of the vessel is

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:1159–1176



DOUBLY CONSTRICTED 3D VESSEL 1161

Doubly Constricted Vessel

Figure 1. A 3D doubly constricted vessel.

shown in Figure 1. The governing equations are the three-dimensional, incompressible, un-
steady Navier–Stokes equations written in strong conservation form for mass and momentum.
The arti�cial compressibility method is used by adding a pseudo time derivative of pressure to
the continuity equation. For an arbitrary control volume V , the non-dimensionalized governing
equations are:∫
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In the preceding equations, � is the pseudo-compressibility coe�cient; p is pressure; u; v,
and w are velocity components in the Cartesian coordinate system x, y, and z; t denotes
physical time, � is pseudo time, Re is the Reynolds’ number, and St is the Strouhal number.
Note that the term q associated with the
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pseudo time is designed for an inner-iteration at each physical time step, and will vanish
when the divergence of velocity is driven to zero so as to satisfy the equation of continuity.
The boundary conditions are the following:

• at inlet: u= u(t)=0:5(1− cos( 2�tT + �)); v=w=0• at outlet: ux= vx=wx=p=0
• on solid wall: u= v=w=0.
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It is to be noted here that pulsatility is brought in by the periodic and oscillatory in�ow
with the period T . Free �ow is assumed at the outlet.

DESCRIPTION OF THE NUMERICAL METHOD

By introducing the generalized Reynolds transport theorem and by employing the Gaussian
integration theorem to the �rst and second integrals in Equation (1), respectively, an integrated
form of the governing equations in general curvilinear co-ordinate system is gained as

∫
V
St

(
@q
@�

)
dV + St

@
@t

∫
V
QdV +

∫
S
f · n dS=0 (2)

where f =(F+Fv;G+Gv, H+Hv); S denotes the surface of the control volume; n=(nx; ny,
nz) are components of the unit outward normal vector corresponding to all the faces of the
control volume cell. The relationship between the physical and computational spaces is given
as: 
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where t∗ denotes the time in computational space (�; �; �). The last term in Equation (2)
expresses the net �ux across the cell faces. For a structured, boundary-�tted, and cell-centered
storage architecture, we can further reform Equation (2) in terms of the semi-discrete form,
where (i; j; k) denote the cell index such that
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The term Vijk is the volume of the cell (i; j; k). Note that the unit outward normal vector n can
be calculated using the areas of the cell faces, e.g., s�n in � direction. A detailed description
of evaluation of the inviscid �ux and the viscous �ux can be found in Reference [17].
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Implicit algorithm for time-integration

The Pade scheme is employed for the time integration
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where parameter � is taken to be 1 for the implicit Euler scheme with second-order accuracy
in time; �t is the time increment; and �q= q(n+1)−q(n). Thus, Equation (4) can be discretized
by replacing the time-related term with Equation (5), such that
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The pseudo time-related terms designed for the inner-iteration can be approximated as
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Note that, in the preceding the approximation (@q(n)=@�= @q(n+1)=@�) is reasonable because
the pseudo time � is for the inner-iteration and thus is dependent at each physical time step.
Hence, the governing equations become
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The implicit Euler scheme is also employed (see Equation (5)) for the pseudo time integration.
Note that there exists a special relationship between Q(n)

ijk and q
(n)
ijk based on Equation (1)
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where Ia=[1; 1; 1; 0]T. Superscript m denotes the number of the inner-iteration. With the dif-
ferencing operator for the pseudo time, the governing equations can be reformed as
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where �� is the pseudotime-step size. In order to bene�t from both lower memory and
computational requirements for the solution of Equation (9), the approximated factoriza-
tion method of Beam and Warming [18], is used for the LHS and, hence, Equation (9) is
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rewritten as:
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where It = I=(� + (�t=��)], and I is a unit matrix. The term associated with the change
of volume of the LHS is neglected, which does not a�ect the accuracy of solution when it
converges. Note that taking an in�nity pseudo time step �t reduces the It to a unit matrix.
Numerical investigation by Roger et al. [19] suggested that this can accelerate the conver-
gence of the inner-iteration. The preceding equations can be further decomposed into three
sweeps in the �; �, and � directions in computational domain. A linear system of equations
is �nally yielded, in which the discrete form of the matrix from the LHS is tridiagonally
banded.

RESULTS AND DISCUSSION

To begin with, code has been validated by simulating the unsteady �ow in a straight tube and
comparing the results with the standard Womersley’s solution as available in the literature
[20]. Numerical results are found to be in good qualitative and quantitative agreement with
an absolute error of less than 1 per cent. A comparison of the numerical and the analytical
solutions is shown in Figure 2. Prior to the code checking, grid validation tests are carried out
on four di�erent grid systems i.e. 15× 21× 15; 21× 21× 15; 27× 27× 21 and 31× 31× 21.
It is noticed that with the current numerical scheme as one moves from 21× 21× 15 grid
system to a higher grid systems the qualitative behavior of the results related to the problem
remain the same and a quantitative deviation of less than 2% is noticed. This error can further
be reduced to less than 0.5% with a slight reduction in the time step size and without any
noticeable increase in the number of iterations as the current numerical scheme is in the
implicit setting. It is also to be noted that the current unsteady �ow investigation is related
to a periodic �ow and one has to repeat the simulation for each setting till a periodicity is
observed, which in this case happens to be three cycles. Each cycle consists of about 1000
time steps and each time step consists of about 5–15 inner iterations pertaining to pseudo
time (�). With 21× 21× 15 grid system on a PIII machine with a 700MHz processor it takes
about 2:8476 s of CPU time to carry out the calculations of one such inner iteration. On
average it takes about 7:91 h for one full cycle to be completed which is almost doubled if
we moves onto a 31× 31× 21 grid system yielding only a marginal gain in the accuracy.
The memory requirements (assessed based on data structure in the code) as one moves from
a 21× 21× 15 grid system to a 31× 31× 21 grid system is enhanced by a factor of 4.3. In
view of the enormous amount of computational e�ort, a 21× 21× 15 grid system is chosen
for �ow simulations owing to the gain in computational time and resources and also due
to the possible solution behavior as projected by grid validation tests. On the chosen grid
system, solution at every time step is obtained to an accuracy of 10−6 in the square of the
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Figure 2. A comparison of the numerical and analytical solutions.

L2-norm of relative error between two consecutive iterations. Further the results are veri�ed
to be solenoidal, i.e. mass conserving.
The parameters that govern the unsteady �ow dynamics in a vessel with multiple constric-

tions are Reynolds’ number (Re), Strouhal’s number (St), degree of constriction (	) and the
spacing between the constrictions (S). Currently with a focus on time dependent analysis of the
in�uence of interacting stenoses and Re on pressure �eld and �ow �eld and further on subtle
3D unsteady features like vortex formation and shedding, results pertaining to the numerical
simulations with St=0:0124; 	=0:292 (which leads to 50% constriction), S=1; 2; 3; 4;∝ (i.e.
very large spacing) and Re=100; 200; 400; 800; 1200 have been reported for a full cycle of
period (T ). The �rst half of the cycle corresponds to the �ow acceleration phase (or systolic
phase) and the latter half of the cycle corresponds to the �ow deceleration phase (or diastolic
phase). Results are reported at t=[T=i]; i=1; 2; : : : ; 8.
To begin with, to get an idea of the �ow �eld iso-velocity contours for the settings

Re=1200; S=1; 	=0:292; St=0:0124 for the whole cycle are presented in Plate 1(a)–
(h). Owing to the oscillatory nature of the in�ow and the geometry of the multiply con-
stricted vessel, interesting contour patterns are seen in the �ow domain. In the �rst part of
the systolic phase maximum �ow, velocities are seen under the �rst constriction and in the
later half of the systolic phase �ow under the second constriction attains maximum velocity.
In the diastolic phase the velocities under both constrictions are relatively lower than that
found in the downstream region of the vessel. Two concentric circular cellular patterns of
iso-velocity regions found at the beginning of the systolic phase under the two constrictions
slowly elongate to merge into a single unit by the early diastolic phase and ends up as a
complex pattern by the end of diastole. At the end of the systolic phase circular contours of
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Figure 3. Vector plots on slant CS of the domain for N =2; S =1 at Re=1200. Plots corresponding
to T = I=8; I =1; : : : ; 8 will be referred to as (a)–(h).

iso-velocity magnitude are seen to manifest near the vessel wall on the downstream side of
the constrictions. The circular contours downstream of the second constriction elongates faster
and vanishes earlier than those on the wall in the region between the two constrictions. These
circular patterns indicate the possible �ow separation, stretching and possible vortex formation
and shedding. Now, to further investigate the possibility of any such �ow separation, vortex
formation and for subtle 3D features streamtraces or streamtubes in the form of thin volume
lines have been presented in Plate 3(a)–(h). Streamtracing is based on the j-sections Plots
in Figure 5 are drawn on the j-section with j=5; 15. In Plate 3(c), corresponding to the
beginning of the second half of the systolic phase �ow, separation zones are noticed on the
diverging walls of the second constriction and also on the walls between the two constric-
tions. By the end of the systolic phase (Plate 3(d)) both these separation regions stretch to a
larger size. While the separation zone on the diverging wall of the second constriction gets
much larger and stretches prominently to the downstream side of the vessel, the separation
and re-attachment points of the separation zone on the wall between the two constrictions
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Figure 4. Vector plots on slant CS of the domain for N =2; S =2 at Re=1200. Plots corresponding
to T = I=8; I =1; : : : ; 8 will be referred to as (a)–(h).

move further upstream and downstream covering a larger portion of the spacing between the
constrictions. As �ow gets into the diastolic phase the separation zone on the diverging wall
of the second constriction grow faster. From Plate 3(e), one can notice that by T =5=8, i.e.
the �rst part of the diastolic phase, the separation zone on the diverging wall of the second
constriction has grown larger and is tending towards possible detachment from the wall for
vortex shedding. From Plate 3(f), T =6=8, it is clear that vortex shedding has already started
on the downstream side of the second constriction. During this period, the separation zone on
the walls in the spacing between the two constrictions is still growing and getting prominent.
From Plate 3(g) corresponding to the �rst part of the second half of the diastolic phase (i.e.
t=7=8) the separation zone grows larger covering the hull in the region between the con-
strictions and is on the verge of detachment from the wall and leading to vortex shedding.
By t=8=8, i.e. the end of the diastolic phase as seen in Plate 3(f), the vortex shedding has
fully taken place. Now from Plate 3(g) and (f) the 3D features of the vortex shedding are
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Figure 5. Vector plots on slant CS of the domain for N =2; S =3 at Re=1200. Plots corresponding to
T = I=8; I =1; : : : ; 8 will be referred to as (a)–(h).

amply clear. It is also to be noted that as shown by the iso-velocity plots by the end of the
cycle �ow does get complicated and this is fully 3D in nature.
Next, to analyze the in�uence of the spacing between the constrictions on the observed

features, simulations are carried out for the spacings S=1; 2; 3; 4;∝ (where ∝ refers to the
case of the vessel with single constriction), Re=1200; St=0:0124; 	=0:292. Now the results
of the study are presented in the form of vector plots on slant cross sections cutting across the
constricted regions of the vessel. These results are given in Figures 3–7. In all these �gures
‘MG’ refers to the magni�cation of the vector length, ‘|Cs-VelMax|’ refers to the magnitude
of the maximum velocities found on the slant CS. It may be noted that the plots in Figure
3(a)–(h) correspond to the case presented in Plate 3(a)–(h) and hence can serve as a good
reference for understanding Figures 4–7(a)–(h). Figures 3–7(a) depict slant CS on which
the vector plots are presented. On closely observing the magnitudes and the direction of
the vector lines along the circumference of the slant CS and also the vector lines at the
bottom of the CS one can infer the manifestation of the re-circulation zones corresponding

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:1159–1176



DOUBLY CONSTRICTED 3D VESSEL 1169

X Y

Z

MG : 3
|Cs-VelMax| : 0.24635

T = 1 / 8
X Y

Z T = 2 / 8

MG : 1
|Cs-VelMax| : 0.97738

X Y

Z

MG : 0.55
|CS-VelMax| : 1.73837

T = 3 / 8
X Y

Z T = 4 / 8

MG : 0.5
|Cs-VelMax| : 2.06487

X Y

Z

MG : 0.5
|Cs-VelMax| : 1.85178

T : 5 / 8

X Y

Z T : 7 / 8

MG : 0.65
|Cs-VelMax| : 1.30344

X Y

Z

MG : 2
|Cs-VelMax| : 0.71342

T = 7 / 8
X Y

Z T : = 8 / 8

MG : 6
|Cs-VelMax| : 0.34732

X Y

Z

Slant CS in a Vessel
with N = 2, S = 4.

Figure 6. Vector plots on slant CS of the domain for N =2; S =4 at Re=1200: Plots corresponding
to T = I=8; I =1; : : : ; 8 will be referred to as (a)–(h).

to the zones of �ow separation. From Figures 3–6(c) it is clear that the time t=3=8 in all
cases �ow separation has already manifested both on the diverging walls of the �rst and the
second constrictions. From Figures 3–6(d)–(f) the elongation of these separated zones can
be noticed. The vector lines in Figures 3–6(f)–(g) clearly indicate that detachment of the
�ow separation zone on the diverging wall of the second constriction giving rise to vortices
happen in the time interval (6=8; 7=8). The �ow separation zones on the walls in the spacing
between the two constrictions move away from the wall leading to vortex shedding in the time
interval (7=8; 8=8). This is clear from Figures 3–6(g)–(h). Further, as the spacing between the
constrictions is increased a re-attachment of the �ow separated on the diverging wall of the �rst
constriction does seem to persist till t=6=8, i.e. the �rst half of the diastolic phase. However,
in the second half of the diastolic phase the whole region along the wall in the spacing
between constrictions is �lled with re-circulation zones. Such a temporal behavior in the �ow
separation and re-attachment in the spacing between the constriction can a�ect the pressure
drop across the constrictions. Before the pressure �eld is analyzed, in�uence of Re on the �ow
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Figure 7. Vector plots on slant CS of the domain for N =2; S =∞ at Re=1200. Plots corresponding to
T = I=8; I =1; : : : ; 8 will be referred to as (a)–(h).

�eld is discussed. In Figures 8–10(a)–(h) vector plots for the case N =2; S=1; 	=0:292 and
Re=800; 200; 100 are presented. Again the features similar to those observed at Re=1200
are clearly noticed at Re=800 and mildly at Re=200. At Re=100 no �ow separation is
noticed on the diverging walls of both the constrictions and is exactly in agreement with the
experimental observations of Talukder et al. [13].
To understand the pressure–�ow relationship pressure drop across the constrictions has

been evaluated. In Figure 11(a)–(h) pressure drop across the constrictions has been plotted
against Re for various spacing between the constrictions at eight di�erent time steps covering
both the systolic and the diastolic phases of a cycle of period (T =1). In all these �gures
the plot corresponding to the case S= ∝ refers to the case with single constriction. During the
entire systolic phase and also till the end of the diastolic phase for all the spacing between the
constrictions, pressure drops across the two constrictions decrease nonlinearly with the increase
of Re. Qualitatively this feature is very much in agreement with the results of Talukder et al.
[13]. During the whole of the systolic phase and in the �rst half of the diastolic phase there
is nearly a two-fold or more increase in the pressure drop for Re¿200 as one moves from
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Figure 8. Vector plots on slant CS of the domain for N =2; S =1 at Re=800. Plots corresponding to
T = I=8; I =1; : : : ; 8 will be referred to as (a)–(h).

a vessel with single constriction to the vessel with double constrictions. This is more vivid
with increasing Re. This variation in the pressure drop with the increase in the number of
constrictions and this degree of sensitivity seem to vary with time, i.e. depends on whether
the �ow is accelerating or decelerating and also on the exact state of these two phases. In
the �rst half of the systolic phase and also during the second half of the diastolic phase the
total pressure drop is found to be larger for smaller spacing between the two constrictions. In
the second half of the systolic phase and also during the �rst half of the diastolic phase the
total pressure drop is found to be larger for large spacing between the two stenoses. Recall
the discussion on the �ow �eld. It is exactly during the second half of the systolic phase
and the �rst half of the diastolic phase that �ow in the case of larger spacing between the
constrictions repeatedly undergoes an expansion after each of the two constrictions in series,
i.e. the separation zone formed on the �rst constriction, re-attaches on the wall between the two
constrictions. This separation zone subsequently in the latter part of the diastolic phase grows,
covering the whole space between the two constrictions and leading to vortex shedding. Energy
loss associated with such �ow expansion after each constriction will be large and consequently
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Figure 9. Vector plots on slant CS of the domain for N =2; S =1 at Re=200. Plots corresponding to
T = I=8; I =1; : : : ; 8 will be referred to as (a)–(h).

the pressure drop will be higher. The greater pressure drop associated with smaller spacing
during the last part of the diastolic phase and early systolic phase may be attributed to the
greater energy loss associated with intense re-circulation zones and associated vortex shedding.
It is to be noted here that Talukder et al. [13] predicted that for Re6100, increase in the
pressure drop with increased spacing is attained within one or two tube diameters. Beyond that
point, the pressure drop is relatively independent of spacing. The current study agrees with
this prediction except during early systole and during late diastole. However, for Re¿100
the current study has shown perceivable variation in pressure drop even for spacing S=4
which is at least eight times the diameter of the constricted vessel. It is to be noted here
that in the present study vessel walls have been treated to be rigid. Consideration of the
compliance in the vessel walls may lead to a small decrease in the above observed factor
in pressure drop possibly due to the slight reduction in the intensity of re-circulation �ow
dynamics.
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Figure 10. Vector plots on slant CS of the domain for N =2; S =1 at Re=100. Plots corresponding to
T = I=8; I =1; : : : ; 8 will be referred to as (a)–(h).

CONCLUSIONS

The coupled nonlinear partial di�erential equations governing the mass and momentum con-
servations of a 3D unsteady periodic �ow in a vessel with two constrictions in a series has
been numerically solved employing a time accurate Finite Volume Method. Numerical sim-
ulations are carried out for various values of Re; S; �xing St and 	. In comparison with the
total pressure drop across a single constriction, the pressure drop across a series of two mild
constrictions is found to be signi�cant with the following characteristics:

• Nearly double-fold increase in the pressure drop with the increase in Re(¿200).
• In the �rst half of the �ow acceleration phase and also during the second half of the
deceleration phase the total pressure drop is found to be larger for small spacing between
the two constrictions.
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Figure 11. Pressure drop across the two constrictions vs Re at di�erent time steps in ves-
sels with varying spacing between the two constrictions in series (s=oo refers to the case

with constriction).

• In the second half of the �ow acceleration phase and also during the �rst half of the
�ow deceleration phase the total pressure drop is found to be larger for large spacing
between the two constrictions.

• Both for single and multiple constriction cases, pressure drop across the constrictions is
found to decrease with Re.

Flow separation occurs on the diverging walls of both the constrictions. However, the
separation zone on the diverging wall of the downstream constriction detaches earlier from
the wall than the other separation zone. Prominent vortex shedding with 3D features are
seen at the end of the �ow deceleration phase in the spacing between the constrictions.
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Figure 11. (continued).

The vortex shedding from the re-circulation bubbles leads to the natural question of the
presence of any global �ow instability. Further, if there is any such global �ow instability
one has to investigate its relation to the strength of circulation and to the outlet bound-
ary conditions. The authors propose to make a detailed investigation of these issues in the
future.
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Plate 1. Velocity magnitude contours on a longitudinal CS of the domain at eight di�erent time
Steps for Re=1200; N =2, and S =1.
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Plate 1. (continued).

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38(12)



X Y

Z

J -Sections of the Domain
with N = 2, S = 1

1

6

11

16

Plate 2. Typical j-sections of the domain.
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Plate 3. Stream traces on the longitudinal sections j=5; 15 at di�erent time
steps for Re=1200; S =1, and N =2.
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Plate 3. (continued).
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